Bharatiya Vidya Bhavan's



1

# SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058



#### End Semester Examination - May 2019

#### **Program: M. Tech Electrical Engineering**

Course Code: PC-MTPX201

Duration: 3 Hr Maximum Points: 100

Semester: II

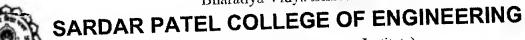
Course Name: Power System Dynamics and Control

Instruction: (i). Assume suitable data if required.

#### (ii). Question No. 1 is compulsory and attempt any four from rest

| Q.No. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                       | Points | СО  | BL | PI    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|----|-------|
| l(a)  | Find the eigen values, eigen vectors and participation factor for following nonlinear equations.<br>$\frac{dX}{dt} = 3X + 2Y + 4Z,  \frac{dX}{dt} = 2X + 2Z \text{ and } \frac{dX}{dt} = 4X + 2Z + 3Z$                                                                                                                                                                                                                                          | 10     | 3.1 | L2 | 3.1.  |
| 1(b)  | For the system shown in figure when a three phase fault is applied at<br>point P. Find the critical clearing angel for clearing the fault with<br>simultaneously opening of breaker 1 and 2. The reactance values of<br>various components are given in diagram. The generator is<br>delivering 1.0 pu power at the instant preceding the fault.<br>$j_{0.5}$<br>$j_{0.25}$<br>$j_{0.25}$<br>$j_{0.05}$ infinite<br>bus<br>$ V =1\angle0^\circ$ | 10     | 3.2 | L2 | 3.2.  |
| 2(a)  | <ul> <li>Analyze using equal area criteria the situation when sudden short circuit takes place on one end of parallel lines for following cases:</li> <li>(a) When short circuit takes place at one end of line.</li> <li>(b) When short circuit takes place away from line ends.</li> <li>(c) When reclosure action takes place successfully.</li> </ul>                                                                                       | 15     | 4.1 | L4 | 4.1.  |
| 2(b)  | What will be the behavior of different trajectories around a singular point for different eigen values combinations?                                                                                                                                                                                                                                                                                                                            | 5      | 1.4 | L6 | 1.4.1 |
| 3(a)  | Discuss the $\frac{d(\Delta Q)}{dV}$ voltage stability criteria with the help of necessary equations and curves.                                                                                                                                                                                                                                                                                                                                | 10     | 1.3 | L4 | 1.3.1 |
| 3(b)  | How the stability for non-linear and liner system can be defined.<br>Elaborate and classify the stability of non-liner system based on<br>region of state space.                                                                                                                                                                                                                                                                                | 10     | 2.1 | L5 | 2.1.3 |
| 4(a)  | The figure represents the system of thermal generating station consisting of four 555MVA, 24KV, 60 Hz Units. The network reactances shown in figure are given in pu on 2220MVA, 24KV                                                                                                                                                                                                                                                            | 10     | 1.4 | L6 | 1.4.1 |

|      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                              |    |     |          |      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----------|------|
| 6(a) | Find the critical clearing angle for the system shown in figure for a three phase fault at point P. The generator is delivering 1pu power under prefault conditions.                                                                                                                                                                                                                                                | 10 | 1.4 | L6       | 1.4  |
| 5(b) | Develop with the suitable equations and block diagram generator classical model for SMIB.                                                                                                                                                                                                                                                                                                                           | 10 | 2.1 |          | 2.1. |
| 5(a) | Derive the equation of Pn nose curves, the family of Pn/Qn curves<br>and corresponding equation of inverted parabola in Pn-Qn. Explain<br>all the equations.                                                                                                                                                                                                                                                        | 10 | 1.3 | L2<br>L5 | 2.1. |
| 4(b) | How the steam turbine can be modelled mathematically?                                                                                                                                                                                                                                                                                                                                                               | 10 | 2.2 | L2       | 2.2. |
|      | expressed in pu on 222001 VA, 24 KV base.<br>$X_d' = 0.3$ H= 3.5 MW.s/MVA<br>Write the linearized state equations of the system. Determine the<br>eigen values, damped frequency of oscillations in Hz, damping ratio<br>and undamped natural frequency when $K_D = 10$ ( in pu torque/pu<br>speed).<br>HT<br>$4 \times 555$<br>MVA<br>$E_i$<br>$j_{0.15}$<br>$E_i$<br>$j_{0.93}$ CCT 2<br>$E_B$<br>$Q \rightarrow$ |    |     |          |      |
|      | $P = 0.9$ , $Q = 0.3$ (overexcited), $E_t = 1 \angle 36^{\circ}$ and $E_B = 0.995 \angle 0^{\circ}$<br>The generators are to be modelled as a single equivalent generator<br>represented by the classical model with the following parameters<br>expressed in pu on 2220MVA, 24 KV base:                                                                                                                            |    |     |          |      |
|      | base(referred to thr LV side of step up transformer). Resistances are<br>assumed to be constant. Analyse the small signal stability of the<br>system about the steady state operating conditions following the loss<br>of circuit 2. The post fault system condition in pu on 2220MVA,<br>24KV base is as follows:                                                                                                  |    |     |          |      |


2

РТО

| 6(b) | Discuss critical load demand and voltage collapse condition with<br>the help of necessary equations.             | 10 | 1.3 | L3,L4 | 1.3.1 |
|------|------------------------------------------------------------------------------------------------------------------|----|-----|-------|-------|
| 7    | Elaborate in detail with suitable equations and block diagram how<br>the modelling of hydro turbine can be done. | 20 | 1.4 | L6    | 1.4.1 |

Notes: All the best.

Bharatiya Vidya Bhavan's



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

# End Sem - May 2019 Examinations

Program: M. Tech PEPS

Course Code: PC-MTPX 202

Duration: 3 Hr Maximum Points: 100 Semester: II

**Course Name: Advanced Control of Electrical Drives** 

## Notes:

- Question no 1 is compulsory
- Assume suitable data and justify if required

| Q.No | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Point<br>s | СО | BL | PI    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|-------|
| Q1   | <ul> <li>Justify with reasons any two:</li> <li>1) Current ripple and its effect on the performance of motor</li> <li>Circuit and the DC drive response</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20         | 3  | 2  | 1.3.1 |
| Q2a) | <ul> <li>2) Give a brief comparison of the D.C. drive response with P, PI and PID controllers</li> <li>3) Principal of field oriented control.</li> <li>A 220 V, 960 rpm, 12.8 A separately excited dc motor has armature circuit resistance and inductance of 2 ohm and 150</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10         | 2  | 3  | 2.4.1 |
|      | annature circuit resistance and a single phase half controlled<br>mH, respectively. It is fed from a single phase half controlled<br>rectifier with an c source voltage of 230 V, 50 Hz. Calculate<br>i) Motor torque for $\alpha = 60^{\circ}$ and speed = 600 rpm<br>ii) Motor speed for $\alpha = 60^{\circ}$ and T = 20 N-m                                                                                                                                                                                                                                                                                                                                                                                                  |            |    |    |       |
| b)   | Derive the state space model of separately excited DC motor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10         | 3  | 2  | 1.3.  |
| Q3a) | <ul> <li>A 200 V, 960 rpm and 200 A separately excited dc motor has<br/>an armature resistance of 0.02Ω. The motor is fed from a<br/>chopper which provides both motoring and braking<br/>operations. The source has a voltage of 230V.Assume<br/>continuous conduction. <ol> <li>Calculate duty ratio of chopper for motoring<br/>operation at rated torque and 350 rpm.</li> <li>Calculate duty ratio of chopper for braking<br/>operation at 350 rpm.</li> <li>If maximum duty ratio of chopper is limited to<br/>0.95 and maximum permissible motor current is<br/>twice the rated, calculate maximum permissible<br/>motor speed obtainable without field weakening<br/>and power fed to the source.</li> </ol> </li> </ul> |            | 2  | 3  | 2.4.  |
|      | If the motor field is also controlled in iii) calculate field<br>current as a fraction of its rated value for a speed of 1200 rpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |    |    |       |



Bharatiya Vidya Bhavan's



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

# End Sem - May 2019 Examinations

| b)   | Explain neatly with waveforms two quadrant chopper<br>controlled drive <b>OR</b><br>Elaborate the braking and multi quadrant operation of VSI<br>Induction motor drives. (dynamic and regenerative braking)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 | 3 | 3 | 1.3.1 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|-------|
| Q4a) | A 400 volts ,50 Hz , 4 pole, 1370 rpm star connected<br>induction motor is supplied from a current regulated PWM<br>voltage source inverter and is operated with rotor flux<br>oriented control. The motor parameters are given as<br>Rs' = 2 ohm, $Rr' = 5$ ohms, $Xls = Xlr' = 5$ ohms, $Xm = 80$                                                                                                                                                                                                                                                                                                                                                           | 10 | 3 | 3 | 2.4.1 |
|      | ohms, all reactances are calculated at 50 Hz. Neglect friction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |   |       |
|      | <ul> <li>and core losses.</li> <li>a) Find the required values of Ids and Iqs to operate the motor at rated speed, if the terminal voltage and frequency are kept at the rated value</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |   |   |       |
|      | <ul> <li>b) Calculate the torque and slip frequency in rad/sec<br/>under the condition (a)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |   |   |       |
| b)   | Elaborate neatly Braking operation of synchronous motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 | 4 | 2 | 1.3.1 |
| Q5   | Explain <b>Direct torque control</b> of Induction Machines?<br>Derive the torque expression with stator and rotor fluxes, and<br>also explain DTC hysteresis control strategy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 | 5 | 5 | 1.3.1 |
|      | Elaborate neatly Synchronous motor control with Brushless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 5 | 2 | 1.3.1 |
| Q6a) | excitation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |   |   |       |
| b)   | A 3-phase, 460 volts, 60 Hz, 6 pole, Y connected cylindrical<br>rotor synchronous motor has a synchronous reactance of $Xs =$<br>2.5 ohms and armature resistance is negligible. The load<br>torque, which is proportional to the speed squared is $TL = 398$<br>Nm at 1200 rpm. The PF is maintained at unity by field<br>control and the voltage to frequency ratio is kept constant at<br>the rated value. If the inverter frequency is 36 Hz and the<br>motor speed is 720 rpm, calculate<br>a) the input voltage Va,<br>b) the armature current Ia,<br>c) the excitation voltage Vf,<br>d) the torque angle $\delta$ , and<br>e) the pull out torque Tp. |    | 5 | 3 | 2.4.1 |
| Q7   | Write short notes on any two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 | 2 | 4 | 1.3.1 |
|      | <ul> <li>i) Load commutated inverter fed drive</li> <li>ii) Stationary reference frame theory.</li> <li>iii) Indirect or direct vector control</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |   |   |       |

115119



## Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

## End Sem - May 2019 Examinations

## Program: M. Tech PEPS

**Course Code: PE-MTPX 201** 

**Duration: 3Hr** Maximum Points: ‡00

Course Name: Advanced Techniques in Power System Protection

Semester: II

Notes:

- Question no 1 is compulsory •
- Assume suitable data if required and justify

| Q.No. | Questions                                                                                                                                                                                                                                                                                                             | Points | со | BL | PI    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|----|-------|
| QI    | Explain with neat diagrams and reasons :                                                                                                                                                                                                                                                                              | 20     | 1  | 2  | 1.3.1 |
|       | <ol> <li>How transmission lines are protected against lightning?</li> <li>Explain the functioning of reverse power flow relay.</li> <li>Why is phase angle information required to protect a radial system with source at both ends?</li> <li>Distinguish between dependebility and recercity of a</li> </ol>         |        |    |    |       |
| 1     | 4) Distinguish between dependability and security of a relay.                                                                                                                                                                                                                                                         |        |    |    |       |
| Q2a)  | <ul> <li>How is differential protection scheme used in the following:</li> <li>(1) Transmission line protection.</li> <li>(2) Transformer protection.</li> <li>(3) Bus bar protection.</li> </ul>                                                                                                                     | 12     | 1  | 2  | 1.3.1 |
| b)    | Find out the value of Zn for a mho relay with torque angle 75° which has to give 100% protection to a 50 km long 110kV transmission line with impedance 0.8 ohm-per km and angle 80° If the maximum load on this line is 1000A at 30° lagging, is there any possibility of relay tripping on load? CT ratio is 1000:5 | 08     | 2  | 3  | 2.4.1 |
| Q3a)  | Explain neatly in detail each component with diagram the basic elements of digital protection in power system.                                                                                                                                                                                                        | 14     | 1  | 2  | 1.3.1 |
| b)    | Using the method of least squares, find an equation of the form $y = ax + b$ that fits the following data:                                                                                                                                                                                                            | 06     | 2  | 3  | 2.4.1 |
|       |                                                                                                                                                                                                                                                                                                                       |        |    |    |       |



## Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai -400058

## End Sem - May 2019 Examinations

| Q.No. | Questions                                                                                                                                                                                                                                                                                   | Points | СО | BL | PI    |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|----|-------|
| Q4a)  | Derive the sampling theorem. A 40 kHz signal is sampled at 49 kHz. What is the minimum frequency to which this signal will be aliased?                                                                                                                                                      | 08     | 2  | 3  | 2.4.1 |
| b)    | Explain Sample and first derivative sinusoidal wave based algorithms (Mann and Morrison)                                                                                                                                                                                                    | 12     | 3  | 2  | 1.3.1 |
| Q5a)  | Find the fourth element of the Walsh function having the order of 5 and length $N = 8$ , ie. Wal(5,4)                                                                                                                                                                                       | 08     | 2  | 3  | 2     |
| b)    | Explain briefly the digital Generator protection                                                                                                                                                                                                                                            | 12     | 1  | 2  | 1.3.1 |
| Q6a)  | What are the advantages of single breaker double bus arrangement<br>over single bus single breaker arrangement? What are the<br>advantages of ring bus arrangement?                                                                                                                         | 14     | 1  | 2  | 1.3.1 |
| b)    | The performance of an overcurrent relay was monitored over a period of one year. It was found that the relay operated 14 times, out of which 12 were correct trips. If the rely failed to issue trip decision on 3 occasions, compute dependability, security and reliability of the relay. | 06     | 2  | 3  | 2.4.1 |
| Q7a)  | What are auxiliary CTs? Why are they used? What is the<br>advantage of numerical relaying over other relaying schemes in<br>differential protection?<br>OR<br>Based on the Bergeron's scheme for travelling wave protection<br>explain the principle of internal fault detection.           | 12     | 1  | 2  | 1.3.1 |
| b)    | Let the primary of the transformer winding has 1000 turns while<br>secondary has 500 turns. If the primary CT ratio is 100:5, find the<br>CT ratio required in the secondary side to establish circulatory<br>current scheme. Draw neat diagram also<br><b>OR</b>                           | 08     | 3  | 3  | 2.4.1 |
|       | Taking an example for explain the Fourier Algorithm for Full cycle window algorithm                                                                                                                                                                                                         |        | -  |    |       |



# Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058



End Semester Examination - May 2019

# Program: M. Tech Electrical Engineering

**Course Name: Smart Grid Technologies** 

**Duration: 3 Hr** Maximum Points: 100

Course Code: PE-MTPX202

Semester: II

Instruction: (i). Question No 1 is compulsory and attempt any four from rest.

| Q.No.       | Questions                                                                                                                                                                                                                                                                             | Points | со  | BL    | PI    |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------|-------|
| 1           | aWhat are the challenges of existing grid<br>which lead us to think about SGT?What are plastic solar cells? How they<br>are advantageous from classical solar<br>bbcells?What is CPP and what are the conditions<br>to set up CPP?What are the different types of Wi-max<br>services? | 5*4    | 2.2 | L1    | 2.2.2 |
| 2(a)        | Do the comparative analysis of AMR and AMI.<br>Elaborate in detail primary components of AMI.                                                                                                                                                                                         | 10     | 3.1 | L2    | 3.1.6 |
| 2(b)        | Define micro-grid. Explain in detail how it will be categorized?                                                                                                                                                                                                                      | 10     | 3.2 | L4    | 3.2.2 |
| 3 (a)       | Define<br>i) Fuel Cell<br>ii) Smart Grid<br>iii) PMU<br>iv) Thin Filmed Solar Cell<br>v) OPV                                                                                                                                                                                          | 1*5    | 1.3 | L1    | 1.3.1 |
| <u>3(b)</u> | Write a short note on Smart Meter.                                                                                                                                                                                                                                                    | 5      | 2.1 | Ll    | 2.1.2 |
| 3(c)        | Formulate the problem for PMU placement problem.                                                                                                                                                                                                                                      | 10     | 3.1 | L1,L4 | 3.1.1 |
| 4(a)        | What is power quality and why it is important?<br>Classify and elaborate different power quality<br>events.                                                                                                                                                                           | 10     | 4.1 | L5    | 4.1.2 |
| 4(b)        | Explain in detail the various services provided<br>by cloud computing in SG. Also elaborate the<br>various deployment models of cloud services.                                                                                                                                       | 10     | 6.1 | L2    | 6.1.1 |

| 5(a) |                                                                                                                                  |    | 1   |       |       |
|------|----------------------------------------------------------------------------------------------------------------------------------|----|-----|-------|-------|
|      | Distinguish between SCADA system and PMU.                                                                                        | 5  | 1.4 | L6    | 1.4.1 |
| 5(b) | Describe in detail various application of PMU                                                                                    | 5  | 4.3 | L4,L3 | 4.3.4 |
| 5(c) | Discuss in detail the various interconnection<br>methods and technologies of micro-grid along<br>with its advantages and issues. | 10 | 2.2 | L6    | 2.2.1 |
| 0(0) | will its duvalitages and issues.                                                                                                 | 10 | 2.2 |       | 2,2,1 |
| 6(a) | Explain in detail various constituents of IED configuration.                                                                     | 10 | 2.2 | L4    | 2.2.2 |
| 6(b) | What is the role of power quality conditioners<br>in solving power quality issue? Classify in                                    | 10 |     |       |       |
|      | detail various power quality conditioners.                                                                                       |    | 6.1 | L2    | 6.1.1 |
|      | How the communication networks HAN, NAN                                                                                          | _  | . 1 | T 1   | 0.1.1 |
| 7(a) | and WAN are different from each other?                                                                                           | 5  | 2.1 | L1    | 2.1.1 |
|      |                                                                                                                                  |    |     |       |       |
| 7(b) | What are the building blocks of Wi-max?                                                                                          | 5  | 1.4 | L5    | 1.4.1 |
|      | Explain in detail the components of BPL system and Elaborate any five layers of open                                             |    |     |       |       |
| 7(c) | system interconnection.                                                                                                          | 10 | 4.3 | L2,L4 | 4.3.4 |

Notes: All the Best.



# BharatiyaVidyaBhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058



# End Semester Exam May-2019

Program: M. Tech TE/MD/PEP/CM Course Code: THAU4/MDAU4/AUMTPX201/CMAU2 Course Name: Stress management by yoga

Duration: 3 Hour Maximum Points: 100 Semester: II

### **Notes:**

1. Question number ONE is compulsory and solve any four out of remaining six.

| Q.No. | Questions                                              | Points | со | BL | PI    |
|-------|--------------------------------------------------------|--------|----|----|-------|
| 1.    | "Integral yoga for integrated personality"<br>Explain? | 20     | 1  | 1  | 1.2.1 |
| 2.    | How yoga helps in education?                           | 20     | 2  | 2  | 1.2.1 |
| 3.    | How yoga helps in healthy lifestyle?                   | 20     | 2  | 2  | 1.3.1 |
| 4.    | Health is the key of blissful living, Explain          | 20     | 1  | 1  | 1.2.1 |
| 5     | 45 minutes of yoga a day keeps the tension away?       | 20     | 1  | 1  | 1.3.1 |
| 6     | How yoga helps the executives in corporate sector?     | 20     | 2  | 2  | 1.3.1 |
| 7     | Explain how yoga helps in modern living                | 20     | 1  | 2  | 1.3.1 |